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In this paper we present a thorough study of the theory of a pair of qubits, whose
Hilbert space can be identified witiP@ C2. Given an hermitian operatgr of trace

1 in C? ® €2 we focus on the following Problem®roblem 1 Find conditions that
guarantee thap is a state, that is, positive semidefinifroblem 2 Find conditions

that guarantee that a given statés separable, or that is a convex combination of
products of one-particle states. The language we develop for our investigation makes
use of the observation thaf® C2 carries representations of the special unitary group
SU(2) in two dimensions and of the direct product of this group by itself. We introduce
a new type of observable call®kll observablgsection 5) and a new measure of
entanglement callecbncurrencewhich is closely related to the concurrence introduced
by Wootters (Physical Review Letters (1988) 2245—-2248) (section 8). The work has
been inspired by the works of Wootters (Physical Review Letters (189 8022-5025;
Physical Review Letters (1998, 2245-2248) and members of the Horodecki family
(cf Horodecki and Horodecki, Physical Review A (19%8) 1838-1843; Horodecki

et al, Physics Letters A (1996&@P3 1-8; Physics Letters A (1996Bp2 21-25) and
reproduces some of their results.

1. INTRODUCTION

A guantum bibr qubitis a quantum mechanical system whose pure states are
in one-to-one correspondence with the rays in a two-dimensional Hilbert space en-
dowed with a distinguishedrthonormalbasis (0), |1)) (called thecomputational
basig. The situation can be mimicked by choosing for the Hilbert space simply
C? and for the members of the distinguished basis the standard|Basig(1, 0)
and|1) = (0, 1). Typically a qubit is a spin/R particle, a two-level atom or a
polarized photon.

Inrecent years a great deal of interest has been focused on the thegpaiiof a
of qubits. The mathematical structure underlying the physics of this simplest of
all compositeguantum mechanical systems is far from being trivial. This is by no
means surprising, considering that such counterintuitive phenomena as the EPR
paradox must be describable with the help of the mathematical language associated
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with such a system. However, owing to the effort of many mathematically sophis-
ticated researchers such as the members of the Horodecki family (Horodecki and
Horodecki, 1996; Horodeclét al, 1996a,b) and W. K. Wootters (1997, 1998),
considerable progress has been made in uncovering the salient features of the
mathematical structure underlying the system consisting of a pair of qubits. In this
paper we present in a unified fashion some mathematical results that have been
unearthed by these researchers and add some of our own.

Inspired by the pioneering work of Horodecki and Horodecki (1996) and
Horodeckiet al.(1996a,b) we investigated in an earlier paper (Kummer, 1999) the
state space of a pair of qubits (spip2lparticles). In the present paper we widen
and deepen our investigation.

The Hilbert space of a pair of qubits can be identified withgOC?. The two
major questions that we pursue in this paper are

Question 1 What conditions guarantee that a given hermitian operator (of
trace 1) inI¢ @ C? is a state, that is, positive semidefinite?

Question 2What conditions guarantee that a given statejgarablethat is,
it can be represented as a convex combination of products of one-particle states.

In order to tackle these questions it is useful to observeltha C? carries
a representation of the direct prodlt x U, of the special unitary group; =
SU(2) with itself.

In section 2 we introduce those fundamentals of the theory of the ddeup
that are needed for the arguments in this paper. We also describe an interesting
connection between a modified version of the so-céleliibasisin C* ® C? and
that basis of the spac#1, of all complex 2x 2 matrices that consists of the
identity matrix and the three Pauli matrices.

The answer to both of the above questions can be given in terms of the
invariants of an hermitian operator irf ® C? with respect to the groug; x Uj.

These invariants are encapsulated ind¢haonical form which we introduce in
section 3 (Definition 3.1).

In section 4 we construct positive semidefinite hermitian operators by squar-
ing a general hermitian operator. This method immediately reveals a number of
symmetries of the two-particle state space (Corollary 4.4). In addition we describe
in this section the structure of a general pure state. The orbits of pure states under
the groupU; x U; can be labeled by a single paramejethat varies over the
interval [0, 1].£ is called theconcurrenceand measures the degree to which the
two qubits are entangled after they have been prepared into the pure state.

Section 5 presents some results on separable states. Horetlatki 996a)
proved that a state of a pair of qubits is separable iff its partial transposition is
still positive semidefinite. We express this condition in a form that is different
and better adapted to the way we represent the hermitian operatofsgirCt
(Theorem 5.2). Another characterization of a separable state that makes use of the
concept of 8Bell observabléDefinition 5.5) is given by Theorem 5.6.
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Section 6 is devoted to the so-called states wittiximal disorder of the
subsystems or mds stafafso called T states or generalized Bell states) introduced
by Horodeckiet al. (1996a). They can be alternatively described as states whose
reduced density operators are giver%h;or as states that amvariant with respect
to time reversalThese states are particularly well-adapted to the gkbug U1,
because they can be brought to diagonal form by conjugation with an element
of that group. Some results of this section can be found in a different form in
Horodeckiet al. (1996b).

In section 7 we investigate the matrices of a hermitian openatdative to two
bases: the Bell basis and an eigenbasis of its mds component (cf. Definition 4.3).
It turns out that time reversal df is represented bgomplex conjugatiorfor
transposition of its matrix relative to théell basis(Theorem 7.1). Denoting the
matrix of an operatop of trace 1 relative to an eigenbasis of its mds component
by [p], the condition forp to be a state now takes the form of the principal
subdeterminants op[, having to be nonnegative (Theorem 7.3). We also give a
necessary condition for a state to be nonseparable (Theorem 7.4).

In section 8 we propose a new measure of entanglement for mixed states that
generalizes theoncurrencedefined for pure states in section 4. Our extension
of the concurrence function (Definition 8.3) to mixed states slightly differs from
the one defined by Wootters (1998), although the two functions agree on all mds
states.

Section 9 exhibits some examples that are partially adapted from Horodecki
et al.(1996a).

In section 10, we use the mathematical language developed in the bulk of
the paper to express the answers to some questions concerning a pair gPspin-1
particles.

2. PRELIMINARIES ON THE SPECIAL UNITARY GROUP:
THE PAULI MATRICES AND THE (MODIFIED) BELL-BASIS

The Hilbert space of one qubit iS@nd the set of all linear operators i C
can be identified with the algebyal, of all complex 2x 2 matrices.M, can be
made into a Hilbert space by introducing the sesquilinear form:

(a,b) =trace@*b) a,be M, (2.1)

M carries an irreducible representation of the direct prodyct U; of the
special unitary group); = SU(2) by itself.U; is defined as the group of all:2 2
matrices of the form

| B
o=[ % &]
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wherea, g € € such thata|? + |8]2 = 1. The complex conjugation
Ur—~Uu uelU;

is an automorphism df;. In fact it is aninner automorphism implemented by
conjugation with the element
0 1

Indeed, one easily verifies that
U-u-uj=u uel;
Uy x U; acts onM;, by the following rule
(U, up)@ =up-a-u; aeMs (ug, upx) e Up x Ug

The Hilbert space of aair of qubits, & ® C?, is also the carrier space of a
representation of the direct produdt x U,, defined by

(Ul, Uz) — Up @ U2 (Ul, U2) e U x Ug (23)
It turns out that the two representationslyf x U; areequivalent that is,
there exists an isomorphism 0f x U; modules between®® C? and M.

Proposition 2.1. The linear magp : C> ® C> — M, defined on decomposable
vectors by

p(x®Yy)=X-(Uo-y)' x,yeC
is an isomorphism of Umodules and an isometry. Here we think of the elements
of €2 as2 x 1 matrices and the superscript t symbolizes the transpose.

Proof: Firstofall (X, y) — X - (ug - y)! is clearly bilinear and thereforecan be
extended as a linear map to all of @ C2. Identifying thecomputational basief
a qubt (] 0), |1)) with the standard basis ir"@ve have forj, k = 0, 1

o(11) ® uglk)) = [j)(KI,

which shows that all four matrix units are in the rangepofmaking it evident
that ¢ is surjective. Furthermore we have for ali;(u) € U; x U; and for all
X,y e C?

P((U1, U2) (X ®Y)) =Ug-X-(Ug-Uz-y)' =Up-X-(Uz-Up-Y)
=Up-X-(Up-y) Us=Ur-p(X®Y)-Uj

= (U, U2)(p(X ®Y))
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and thusyp is an isomorphism obJ; x U; modules. Finally, we have for aX,
y e C?

lo(x ® Y)I? = [IX||* tracguoyy*ug) = IXI2[lYI? = X ® ylI?

proving thaty is an isometry. O

There is a natural injection d; into the direct product); x U; given byu —
(u,u),u € Uy.

Composing this injection with the respective (irreducible) representations of
Ui x U; on M, and onl€ @ C? we obtain a representationdi that is the direct
sum of the identity representation and a representation by rotation matrices. A
distinguished basis i, adapted to this decomposition 8, into irreducible
subspaces consists of the identity mafrix [(1)‘1)] supplemented by the three Pauli

matrices:
0 1 0 —i 1 0
01=|:1 Oi| 02=|:i Oi| 03 = |:O _1i| (2.4)

1 spans an invariant subspace carrying the identity representation, whereas
the three Pauli matrices span a subspace that carries the representétiooyof
rotation matricedk(u). Accordingly R(u) is defined via the equation

3
Uoku* =Y R(U)jkoj, k=1,2,3ueU; (2.5)
j=1

Using the inner product oM, we can isolate thej( k)-th matrix entry:
1 1
Rk = E(Oj’ Uoyu*) = > tracegjuocu®), j,k=1,2,3 (2.6)

Explicitly R(u) is given by

Reo®— %) Im(e®+ %) —2Reap)
RU) = | —Im(e?— g% Reo?+ 2  2im(ap)
2Rewp) 2im(@p)  (lal*—181%)

Sinceg is an isometric isomorphism @f; modules, the image of the the

orthonormal basis
1 1 1 1
_1’ —01, —0p, —O 2.7
(ﬁ NN AGING 3) @9

in M5 underg~! will be an orthonormal basis in3& C? that is adapted to the
decomposition of €® C? into irreducibléJ; submodules. What is this basis? The
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answer is as follows: It is constituted by the following set of orthonormal vectors
inC*>® C%

1
$o = —=(101) — |10))

72

b1 = %uom ~ |11)

b = %uom +111)

¢3 = ;—Ié(|01) +110)) (2.8)

(Here we use the customary abbreviatipk) := |j) ® |k), (j, k =0, 1) for
the members of theomputational basisf a pair of qubits.)
Thus our basis agrees up to phase factors with the well-krid@lhbasis
and we shall refer to it using this name. Our Bell basis is closely related to what
Wootters (1997) calls the “magic basis.” The precise relationship between the
distinguished basis iM; and the Bell basis in € C? (as defined by us) is given
by the following equations:
0(v2¢0) = ¢(101) — ¢(110)) = [0)(0] + |1)(1] = 1
#(V2ig1) = (p(11D) = ¢(100) = [1)(0] + | 0) (1] = o
¢(V2i$2) = i(p(I11) + ¢(1 00)) = i (12)(0] — [0)(1]) = o2

9(v2ig3) = ((101) + ¢(110))) = |0)(0] — |1)(1] = o3
Therefore

(et ia L,
\/z !\/E l,\/é 21\/2 3

We now deduce from Proposition 2.1 that

) — (b0, i1, i, i) (2.9)

(U® U)o = ¢o
and
3

Ueupk=Y RUKp;, k=1,23

i=1

where theR(u);k values are given by formula (2.6).
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3. HERMITIAN OPERATORS, CANONICAL FORM

The real subspace ofM, spanned by the Pauli matrices ahatoincides
with the subspacé{, of all hermitian 2x 2 matrices. Identifying an hermitian
operator with its matrix with respect to the computational basis we shall think
of the elements of{, as (hermitian) operators ih?’CAccordingly an hermitian
operatoth € H, can be written as

(1) = 50141 o), @)

wherey = tracef) is a real numben;, = (r,r, r3) is a real 3-vector, and- o
is defined byr - o = Z?zlrjaj. From (2.5) we deduce thélt(y, r) transforms
under conjugation by elements of the grdudipaccording to the formula

uh(y, r)u* = h(y, R(u)r), uelU; 3.2)

The spectrum ofi(«, r) is given by
S0 1) = { 307 = 1. 50+ )|

Therefore the positive corfé; of H, can be described as
Hy ={h(y,1) |y =0&r| <y}

Denoting by} the set of all hermitian operators of teat a state of a qubit
is described by an elemep(r) = h(1, r) of thestate space

H3NHE = {p(r) |1 € B}

whereB? denotes the unit ball il. In fact the map > p(r) is an affine bijection
of B3 ontoH% N'H5 . This implies thajp(r) is precisely gure stateof the 1-qubit

system (i.e., a projection) if belongs to the unit sphel®. Indeed, one easily
checks thap(r)? = p(r) iff ||r|| = 1.

The representation (2.3) of the grodp x Uy in C? ® C?induces a represen-
tation ofU; x Uj in the real vector spack, = H, ® H, of all hermitian 2-qubit
operators by conjugation. Accordingly we have an analogous decomposition of an
elementh € H, into irreducible components:

3
h(y,r,s, T):= 1/4()/(1® D+r-o®1+1®s-0+ Z tikoj ®Gk)
ik=1
(3.3)
Here T = (tjk) is a real 3x 3 matrix,r ands are real 3-vectors angd =
tracef) againh(y, r, s, T) transforms under conjugation by elements of the group
U; x U; via the formula

(ul ® Uz)h(]/, rs T)(UI ® U;) = h()/, R(ul)r! R(UZ)Sl R(U]_)TR(Uz)*)
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We writeh(y,, r2, S, T2) ~ h(ya, r1, S1, T1), provided the two hermitian op-
erators are conjugate under the gralpx U; and we say that the two operators
areequivalentor belong to the same orbiBy a judicious choice ofu(; ® uy) €
U; x U; we can achievéR(u;)TR(uz)* = £D whereD = diag(us, p2, n3) and
u1 > w2 > usz > 0 are the three singular values Df that is, the eigenvalues of
the matrix [T] = (T*T)z.

Definition 3.1. A canonical formfor the hermitian operatdu(y, r, s, T) is any
hermitian operatoh(y,r’, s, D) ~ h(y,r, s, T) where D = diag(u1, p2, 143)
is the diagonal matrix whose diagonal entries are the three singular valligs of
descending order.

Proposition 3. 2(Existence of a canonical form). Given any hermitian operator
h(y, r, s, T), there exists a canonical forn{h, 1, s, e D) with e € {+1, —1}.

If detT > Othene = +1and ifdetT < Othene = —1.

If detT = 0 thene can be chosen to be1 or —1, whereby the vectors
r' and s in general will depend on the choice ef More precisely, if Ky,
r’,s,eD) is a canonical form of by, r,s T) then so is lfy, Fsr’, s, —eD),
where R = diag(—1, —1, 1) denotes thel80 flip about the third coordinate
axis.

Proof: (i) detT > 0. By the singular decomposition theorem (cf. Horn and
Johnson, 1985) there exist rotation matricBg, (R,) such thatR; TR, = D. Let

Uk € Usi(k = 1, 2) be such thaR(ux) = R, k =1, 2. Then putting’ = Ryr and

s = Rys, we have

(U1 ® ux)h(y,r,s T)(u; ® u3) = h(y, Rir, Res, D) = h(y, 1’ s, D)

and thush(y, r,s, T) ~ h(y, r’, s, D).

(i) detT < 0. Inthis case the singular decomposition theorem yields a pair of
rotation matricesRy, Ry) suchthaRTR; = —D. The remainder of the argument
is the same.

(iii) detT = 0. In this case the singular decomposition theorem gives us
again a pair of rotation matriceR{, Ry) such thatR,TR; = D and therefore
FsRTR; = —D. Puttingr’ = Ryr ands' = Ryswe get

h(y,r,s, T) ~ h(y, 1, s, D) ~ h(y, Far’, s, —D)
On the other hand if we put = F3R;r ands = R,swe obtain

h(y,r,s, T) ~h(y,r,s,—=D) ~ h(y, Fsr,s, D) O
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The question arises to what extent the vectémnds that occur in a canonical
form areunique To answer this question we introduce 8tabilizer

Hp = {(Rl, R2) [S SCX?)) X 80(3) | R]_DR; = D}

of D. The following proposition is immediate.

Proposition 3.3. Leth= h(y, r,s, T) be an hermitian operator and let(f, r/,

S, ¢D) be a canonical form. Then the most general canonical form of h (with the
same value of) is given by h= h(y, Rir’, RxS, ¢D), where(R;, Ry) varies over

the stabilizer H).

The stabilizeHp, is actually a subgroup of the gro@ x G whereG is the
commutant groupnamely the group of all rotations that commute with

G :={Re SO(3)| RD=DR}
Indeed, it follows from Proposition A.2 (of Appendix A) that
Hp = {(Rl, Rg) eGxG |Ri=R modG’} (34)

whereG’ denotes th@variance groupnamely the group of all rotations that leave
D fixed by multiplication from the left:

G :={Re SO@3)|RD= D}

Note thatG’ is a normal subgroup db (cf. Proposition A.2). The invari-
ance groupG’ depends on the rank d, which of course coincides with the
rank of T. In caseT has rank 2 or 3G’ is the trivial group that in view of
(3.4) implies thatHp = A(G) := {(R, R) | R G}. In caseT has rank 1,G’
coincides with the grouQ1(2) of all rotations about the first coordinate axis.
(More generally we shall use the symi&(2),k = 1, 2, 3, to denote the group
of all rotations about th&th coordinate axis). Finally if =0 thenG' =G =
SO(3).

The commutant grou® depends on the degeneracy of the singular values.
If all three singular values are different then

G = {Fo, F1, F2, F3)
where

F, = diag(1,-1, —-1)

F, = diag-1,1-1)

F; = diag(-1,-1,1)
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are the 180flips about the three coordinate axes &gd= | is the identity matrix.
Clearly in this special casé is an instance of théour-group V. The following
table summarizes the situation:

Rank of T | Possible commutant group G | Invariance group G’
3 V, $03(2), 01(2), SOE) i
2 Vor $5(2) {1}
1 $01(2) S01(2)
0 0(3) SO(3)

Here SQ(2), k = 1, 3 stands for the subgroup of the rotation gr&@(3)
generated by Q(2) andF.

As we shall see the canonical form turns out to be useful for the characteri-
zation of the positive cong(; C Ha. Hj is a self-dual cone relative to the trace
inner product:

(h, b’y = tracefh’), h,h' € Hy (3.5)
For the hermitian operators of trace 1 we use the symbol
po=p(,sT)=h(1,r,sT)

The setH; of all hermitian operators of trace 1 constitutes a hyperplane
in H4. A hermitian operator that belongs to the intersecttéh N H3 is astate
of the 2-qubit system. Thetate spaceS = H, N Hi is a compact convex set
whose extreme points are the one-dimensional projectionspubre states A
state is callegeparableprovided it belongs to the convex hull of all pure states
of the form p(r) ® p(s), wherep(r) and p(s) (r, s € S%) are 1-qubit pure states,
that is, projections in one-particle space @ the usual formulation of Quantum
Mechanics there corresponds to each statat® in the physical sens&hich can
be thought of as a catalogue containing the total information about the system.
We ascribe to the system a pure state provided we possess maximal information
about it. We ascribe to the system a separable state provided the two qubits are
classically correlated

We can now reformulate the two central problems that we address in this
paper as follows:

Problem 1 Describe conditions that guarantee that a given hermitian operator
o = p(r,s, T)oftrace 1 is a state.

Problem 2 Describe conditions that guarantee thata given gtateo(r, s, T)
is a separable state.
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Definition 3.4. Suppose = p(r, s, T) is a state of a pair of qubits. The 3-vectors
r ands are called th@ne-particle vectorgind the 3x 3 matrixT = T, is called
the correlation matrixof p. The singular valueg1 > u, > us of T, are called
the correlation valuesf the statep.
The physical significance of the one-particle vectors becomes clear if we
compute theeduced states

p1=tracep(r,s,T) = %(1—!— r-o)=p(r) (3.6)
and
p2 =tracap(r,s, T) = %(1+ s-0) = p(9) (3.7)

Since p(r) and p(s) are one particlestateswe immediately obtain the
following:

Proposition 3.5. If p = p(r, s, T) is a state them, s € BS.

In a subsequent section we shall sharpen this result by imposing a condition
on the correlation matriX also (cf. Corollary 6.4).

The one-particle vectors and s encapsulate the information we possess
about the two individual constituent qubits after the system has been prepared into
the statep. This information is minimal iff = s= 0. Following Horodecki and
Horodecki (1996) we call a state of the formn= p(0, O, T) a state of maximal
disorder of the subsysternsanmds stateLikewise we call a general operator of
the formh = h(y, 0, 0, T) anmds operatorNote that the mds states can also be
characterized as those states of the pair of qubits thateagant with respect to
time reversal

What about the physical significance of the correlation matfxt is related
to the measurement of observables of tgper ® b - o wherea, b € IR® areunit
vectors In the case of a pair of spin-1/2 particles, measuring the obsemabl&

b - ¢ means the simultaneous measurement of the spin component of Particle 1 in
directiona and the spin component of Particle 2 in directlmnThe expectation
value of this observable in the state= p(r,s, T) is

(p,a-c®b-o)=a-Thb (3.8)
In particular the {, k)-th entry of T is given by

tik = (0, 0} ® ok) (3.9)



1082 Kummer

Since the eigenvalues af o ® b - o are+1 we can conclude that the entries
of a correlation matrix must lie in the intervat[L, 1]. Substituting in (3.9) for the
statep its canonical formp’, we obtain the following.

Proposition 3.6. The correlation values of a state lie in the intery@J 1].

Later we shall sharpen this result considerably (cf. Theorem 6.2 (2)).

Finally before leaving this section we should mention that both problems
described above have been completely solved for mds operators (Horodecki and
Horodecki, 1996; Horodeckt al, 1996a,b).

4. THE SQUARING OF AN OPERATOR AND PURE STATES

In this section we turn toward the question of how to construct hermitian
operators that are states. As is well-known, by squaring any hermitian operators
we obtain a positive semidefinite operator and every positive semidefinite operator
is obtained this way. Let us look first at the case of one qubit.

We get an arbitrary state by squaring an hermitian operator of the Form (3.1)
and making sure that the result has trace 1. In the case of one qubit we obtain

(02 = h( 502+ 119, vr) @)

Theorem 4.1. Letr be a 3-vector with|r| < v2. Letyo = /2 — |r||2. Then
p(yor) is a state and every state can be obtained in this way.

Since the assignment— yor maps the ball of radius/2 into the unit ball
(leaving the unit sphere pointwise fixed) this theorem expresses in an indirect way
the familiar result thap(r) is a state iffir|| < 1. Using Formula (4.1) we also can
rederive the result that(r)> = p(r) iff ||r|| = 1. Thus in the case of one qubit the
method of squaring yields nothing neldowever, in the case of a pair qubits the
same method yields some nontrivial results.

Theorem 4.2. Given any triple(r, s, T), wherer andsare 3-vectorsand T is a
3 x 3 matrix such that

IF)1% + [Isll? + traceT*T) < 4

(This is a ball of radiug in 15-dimensional space), the operator

1 1 1
p= P(E(Vor +Ty9), 5(yos+ T7r), E(VOT —cofac(l) + | r >< SI))
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wherey, is defined by

Yo =+/4—|Ir|2— ||s|? — trace[T*T)

is a state and every state is obtained this way. Here ¢@fpstands for the matrix
whoseg(j, k)-th entry is the cofactor of th@, k)-th entry of T.

Proof: Forthe proof we observe that squaring an operator of the form (3.3) yields

1 1 1 1
h? = h(z(yz + [Ir )12+ Is|? + traceT*T)), ST T, Srs+T), §c>,

4.2)
whereC = (cjx) and
Gk = vtk — (cofacT)jk +rjsc O
Equation (4.2) implies that
tracep?) = %1(;/2 + T 1% + [Is]|? + trace[T *T)) (4.3)
By polarization of this equation we obtain
traceph’) = %(y]/ +r-r'+s-s +traceT*T')) (4.4)

It is useful to introduce the following linear involutions intey

h>h*=h(y,—-r,—s T) and hi> h® =h(y,sr,T*), heH,

Physically (ifh designates an observable or a state) themap h* is nothing
but thetime reversal operation

Definition 4.3. If h = h(y, r, s, T) € H,4 we shall refer t* as thetime-reversed
operatorand toh(P) as theparticle-transposedr p-transposed operaton is called
anmds operatoprovidech” = h and ifh is any hermitian operator its time reversal
invariant parh™ds = %(h +h*) =h(y, 0,0, T) is called thends component of h
Finally h is said to beparticle symmetrior p symmetridf h(P = h,

Remark. Note that our choice of the word “p transposed” and “p symmetric,”
clumsy as it seems at first, is necessary, since by our identification of an hermitian
operatorh in C? ® C? with its matrix relative to the computational basis, the
concepts “transposed” and “symmetric” already have a meaning different from
“p transposed” and “p symmetric.”
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Observe that it follows from (4.4) that the involutions— h* andh - h(P)
are self-adjoint relative to the inner product defined by Eq. (3.5), that is, we have

(h*, n'y = (h, h"®, h,h e Hy (4.5)

and
(hP 'y = (h, Py, h, h eH,y (4.6)
The following corollary is an immediate consequence of Theorem 4.2:
Corollary 4.4. If p = p(r,s, T) is a state then so ip* (called thetime re-

versedstate) angp(P) (called thep-transposesitate). Moreover the mds component
p™Is= 5(0,0, T) of p is a state.

Proof: To show thatp(P) is a state just interchangeands and replaceT by
T* in Theorem 4.2, observing that cofdc) = (cofacT)*. To show thatp” is a
state replace ands by —r and —s respectively. Finally it is clear that the mds
component op, being a weighted mean of two states, is a state.

The following theorem characterizes the idempotent operators of the form
o(r, s, T) (pure states of the 2-qubit system):

Theorem 4.5. Letp = p(r, s, T) be an hermitian operator of track Thenp is
a pure statg(i.e., p? = p) iff for some vectos with ||s| < 1 and some rotation
matrix R

r=-—Rs

T =-R((V1-[sI?)(I - E9) + E) .7

where fors # 0 Es denotes the projection ilR* onto the one-dimensional sub-
space generated s/ In other words, the map

(s, R)— Psr:=p(—Rs,s, —R(v1—[s|*(I — Es) + Es))
is a parameterization of the set of pure states of the pair of qubits by the points
of B® x SO(3) where B denotes the unit ball iflR®. Furthermore Rg and R r
belong to the same orbit iffS'|| = ||s]||.
Proof: Using Eq. (4.2) the conditiop? = p yields
Ir|I? + |Isl|? + trace{ *T) = 3
r=Ts s=T*r (4.8)
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T* = 9s)(r | — (cofac())"

Multiplying the last equation from the right Bby* and making use of the second
equation gives

T*T = |s){s| — T(cofac(l))* = |s)(s| — (detT)I
Hence
T*T + (detT)l = |s)(s| (4.9
Similarly,
TT* + (detT)l = |r)(r] (4.10)
Now from the second of the Eq. (4.8) we deduce that
Irf?=r-Ts=s-T*r = |s|? (4.11)

Inserting this into the first equation of (4.8) and combining it with the equation
obtained from taking the trace in (4.9) we obtain

detT = ||s||° — 1 (4.12)

From Eq. (4.9) or (4.10) we conclude that detc 0, which implies the already
familiar result||s|| < 1. Equation (4.9) can now be rewritten as

[TI? = lIsI*Es+ (1= lIsI?) = (1 — [IsII*)(I — Es) + Es
It follows that
[T]=v1-slI?(l — Es)+ Es (4.13)

Now by the polar decomposition theorem there exi®ts SO(3) such thafl =
—R[T]. Finallyr = Ts= —Rs. The condition|s| = ||| is clearly necessary for
Ps r and Py g to be equivalent. Since a canonical formRyfr is given by

P’ = Pigjerl = p(—lIsllew lIsler, —diag(1, v1— [IsI2, V1~ [Is?)  (4.14)

the condition is also sufficient. O

Following Wootters (1997) we call the numbge /1 — | /5|2 the concur-
renceof the pure statd’; g. The number varies over the interval [0, 1] and
measures the degree of entanglement between the two qubits. For fixed01
let P; denote the orbit of all pure states with concurregcand letS; denote
convex hull of P;: S = convP;.

Note thatP: coincides with the set of all extreme points &f. (Proof:
Theorem A.3)
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Theorem 4.6. (1) The orbitP; is invariant under the involutiong — p* and
p — pPYIf P is a pure state of concurrencgethen so is the time reversed state
P# and the p transposed statéfP

(2) The convex s&; is invariant under the involutions — o*andp > p(P
If the statep is a mixture of pure states of concurrericthen so is the time reversed
state  and the p-transposed statéPh

Proof: (1) SupposeP = Psr. Then P =P_gg and PP = P, r- where
v =—Rs.

(2) The assertion is an immediate consequence of Part (1) and the affine
character of the involutions — p* andp — p®. O

There are two interesting special cases: ThePsatf pure states corresponding
to the points ofSO(3) and the sefP, of the pure states corresponding to the
points of > x SO(3). Py comprises the set of all pure states of the product type
o = p(r) ® p(s), (wherer ands are unit vectors) and therefay coincides with

the set of alseparablestates. On the other hafid comprises the set of pure states
of the formp = p(0, 0, —R) = Py r, and we shall call such a pure statpure
state of mds typdt follows thatS; consists of mds states; as a matter of fact
exhausts the set of all mds states. This follows from the following proposition:

Proposition 4.7. Let7 denote the set of all correlation matrices. Then
T = conv(=SO(3))

Proof: Clearly convE-SO(3)) ¢ 7 since for allR € SO(3) — Re 7 and7 is
convex. Conversely, using Egs. (4.7) and (4.13) we see that every correlation matrix
of apure statebelongs to con{ SO(3)). Indeed since fos £ 0 Eg = %(I + F)
whereF; stands for the flip byr about the axis spanned by the vecave have

for& € [0, 1]

£~ B9+ o= 50148 + 01— 8F,

Now it follows from Eq. (4.13) thatT] is a weighted mean of the identity matrix
| and the flipFs. ThereforeT (= —R[T]) itself is a weighted mean of R and
—RFs.

Finally since the correlation matrik, of an arbitrary stat@ can be written
as a weighted mean of the correlation matrices of at most four orthogonal pure
states (apply the spectral theorenpiahe assertion follows. O

Now let p = p(0, 0, T) be an arbitrary mds state. Then by the proposition
T, =T e conv(~SO(3)) and thereforg € S;.



Pair of Quantum Bits 1087

Remark 4.8. If T is any correlation matrix the mds operatof0, 0, T) is a
state. (Indeed ifT is a correlation matrix then by definition, for some vectors
r,se B%, p = p(r,s T)is a state; but thep™ = p(0, 0, T) is also a state, by
Corollary 4.4). Moreover the map — p(0, 0, T) is an affine injection of” into
the state spac8, whose inverse map is the restrictiondp of the mapp — T,
that associates with each statéhe corresponding correlation matrix.

Which condition ensures that the two pure sta®gs= po g, and P, = pg g,
of mds type are orthogonal to each other?

Lemma 4.9. The pure states P= Py g, and B = Py, are orthogonal iff
RiR; = F where F is aflip, that is, a rotation hy.

Proof. Clearly P, and P, are orthogonal iff tracdf, P,) = 0. (Indeed lety; and
x2 be unit vectors in the ranges & and P, respectively. Then traceP(P,) =

I(x1, x2)1%). Now by (4.4), tracelP, P,) = ;11(1 + trace®.R})). ThusP, andP, are
orthogonal iff tracef) = 14 2 cosp = —1, whereF = Ry R; andg is the angle
of rotation of F. Hencepy = 7. O

Lemma 4.10. Fork =0, 1, 2, 3,define
P« = Por

where the ks are the elements of the four-grodpdefined in the paragraph
preceding Proposition 3.3. Thdi®y, P1, P,, P3) is a complete orthogonal set of
pure states.

Proof: For the proof observe that
3

3
%ZPk:p(0,0,—i—t(l +ZFk>) = p(0,0,0) = %(1@1) O
k=1

k=1

Using the formulas
(ok ® ok)po = —¢po, k=1,2,3 (4.15)
and
(ok ® oW)gj = (-1)*%¢;, j, k=1,2,3 (4.16)

it is easily verified that thePcs are the projections corresponding the one-
dimensional subspaces generated by the membersBétheasis(¢o, ¢1, P2, $1)

in C*> ® C? defined by Eq. (2.8), thatis, fér= 0, 1, 2, 3,Px = |¢x) (¢«|. Accord-
ingly we shall call @, P1, P2, P3) the Bell set (Traditionally P, is called the
singlet statewhereasP;, P,, P; are calledriplet state3. A general Bell setvill
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be for us any setQo, Q1, Q2, Q3) suchthatfok =0, 1, 2, 3
Qk = (U1 ® U2) P(U1 ® U3) = Po RuyFeR(w)* (4.17)

If h(y, r, s, T)is an hermitian operator with canonical fohty, r’, s, ¢ D) we can
compute its lowest eigenvalug using the following expression

A tracefi(y, r’, s, eD)P,, r:)

= inf
IVI<1,ReSOE@)
1

= - inf
4 |v|<1,ReSQ3)
— e tracgRD(v'1 — |[V|3(l — Ey) + Ey)))

The operator is positive semidefinite iff > 0. This leads to the following
criterion for a given hermitian operatp(r, s, T) of trace 1 to be a state

((y —v- (RS =r1")

Theorem 4.11. Let p = p(r, s, T) be a hermitian operator of trace 1 and let
p(r’, s, eD) be one of its canonical forms. Then a necessary and sufficient condi-
tion for p to be a state is that

sup  (v- (RS —r' +¢tracgRD(y/1 — [Vl — E,) + Ey))) <1

Ivli<1,ReSQ3)

5. SEPARABLE STATES

In this section we deal with the s8¢ of all separable states. The following
lemma shows that the sép possesses a symmetry property beyond the general
symmetry properties exhibited k& for generak (which are described in Part (2)
of Theorem 4.6):

Lemmab5.1. If p(r,s T) € Sothenp(r, —s, —T) € So.

Proof: Suppose(r,s, T) = > c(e(rk) ® p()), where theg, are nonnegative
numbers adding up to 1 ang ands, are unit vectors. Then = > ¢ry, S=
> ks andT = D cklrk >< . Therefore

p(r, =5 —T) =) (o) ® p(-s)) € So O

The following theorem, part of whose proof we moved to Appendix B, shows that
this symmetry property characterizes the set of all separable states.

Theorem 5.2. Suppose(r, s, T) is a state. Then these are equivalent:

(1) p(r, s T)is separable.
(2) p(r, —s, —T)is a state.
3) p(-r,s —T)is a state.
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Proof: (1) = (2) by Lemma5.1
(2) < (3) by Corollary 4.4
(3) = (1) by Corollary B.5 O

Corollary 5.3. Suppose = p(r, s, T) is a state and eithep(r, —s, —T) ~ p
or p(—r,s, —T) ~ p; thenp is separable.

Corollary 5.4. Letp = p(r, s, T) be a state with det = 0 and suppose that
there is a canonical formp(r’, s, D) of p such that eitherf = O or s; = 0. Then
o is separable.

Proof: Since defl = 0p(Fsr’, s, —D)andp(r’, F3s, —D) are other canonical
forms of p(r, s, T) (cf. Proposition 3.2). Ifr; =0 thenFsr’ = —r’ and there-
fore p(—r’, s, —D) is a canonical form op. Now p(—r’, s, —D) is manifestly
a canonical form ofp(—r, s, —T) and thereforep(—r, s, —T) ~ p. Similarly if

s; =0 thenp(r, —s, —T) ~ p. The conclusion now follows from the previous
Corollary. O

Corollary 5.5. Letp = p(r, s, T) be a state and assume that rank<T1. Then
p is separable.

Proof: In this case the invariance gro@ of D = diag(u1, 0, 0) contains the
subgrouis O (2) of all rotations about the first coordinate axis. Thys(if', s, D)
is any canonical form gb(r, s, T) then soiso(Rr’, s, D) foranyR € SO (2). By
a judicious choice oR we can achieveRr'); = 0. 0O

Theorem 5.2 suggests that we introduce another linear involtienh into
the setH4, wherebyh = (v, r, —s, —T)if h = (y, r, s, T). Thisinvolution is again
self-adjoint relative to the inner product definedi

(h,ny = (h, i), hh eH, (5.1)

a result that implies, together with the self-duality of cohg, that also the
cong{; = {h € Hylh € H}} is self-dual. Moreover we have

h+h=h(1nel (5.2)

Let K be the (closed) convex cone generated by th&gef all separable states:
K= UyzO ySp and letK be its dual cone

~

K={heHs|VYp e So: (h, p) =0}
By Theorem B.3 (of Appendix B) we have
K=H+H] (5.3)
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Definition 5.6. An hermitian operatoh of the formh = k + k' with k, k' €
H; is called aBell observable

Now the bipolar theorem (cf. Hilgedt al (1989), Proposition 1.14) imme-
diately gives

Theorem5.7. Anhermitian operatop of tracelis a separable stateith, o) >0
for every Bell observable. A stateis separable iff the expectation value of every
Bell observable in the stateis nonnegative.

If p is a state then by definition i a Bell observable. The eigenvalues of
p are the possible outcomes that a measurement of the observable can yield. By
Theorem 5.2p is separabléff p is positive semidefinite. Les; = (tracery) 1y
be the normalized eigenprojection@bélonging to the lowest eigenvaliie Then
the expectation value of the Bell observaplen'the statep is given by(p,, p) =
(p1, ) = . If pis nonseparable thery < 0 and therefore is nonseparable
(sincep; is not positive semidefinite or since the expectation value of the Bell
observablep in the statep; is negative). Thus we have proved

Corollary 5.8. Let p be a state. Thep is nonseparable iff the lowest eigen-
value; of the Bell observablé is strictly negative. Lep; be the normalized
eigenprojection of belonging to the lowest eigenvaliig. Theni is the expec-
tation value of the Bell observabjg in the statep, and if p is nonseparable then
S0 isps.

Example Suppose = p(0, 0, T) is an mds state. Then it follows from Eq. (5.2)
thatp + 4 = 3(1® 1) and therefore

pp=2p=p

If p is alsopureand therefore is of the form = p(0, 0, —R) = Py r then

!
pp=—5p

Sincep; being equivalent t(0, 0, 1), has the spectrum
11
sp() = {—5’ 5}

with —1 being asimpleeigenvalue, we conclude tha = p andi; = —3.
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6. THE MDS-STATES

In this section we turn our attention to hermitian operators of the form
0(0, 0, T) whose canonical form jg(0, 0, ¢ D). Thusin case dé&t > 0(detT < 0)
the canonical formis uniquely given la§0, 0, D)(0(0, O, —D)). Inthe case where
detT = 0 there are two canonical formpg0, 0, D). The spectrum 0p(0, 0, T)
coincides with the spectrum of its canonical foptd, 0, ¢ D), which in turn can
easily be determined since the Bell basis i&CC? consists of eigenvectors for
p(0, 0, ¢D). The corresponding eigenvalues are affine functions of the singular
valuesyty, o, anduz of T.

More precisely, using Formulas (4.15) and (4.16) we easily verify the follow-
ing theorem:

Theorem 6.1. Fork =0, 1, 2, 3we have
p(0, 0, eD)px = w(e)ek

where

Wo(e) = 31— eyu1 + iz + 113)

wy () = %(1 +e(—p1 + p2 + 13))
Wole) = 3L+ e(ur — iz + 113)
ws(e) = 3L+ e(ua + 14z — 13)

Let (ug, up) € Uy x Uy be such that
p(0,0,T) = (U1 ® U)(p(0, 0, £D)(u} ® ) (6.1)
Then the vectors defined by
Yk =(U1®@uU)gk, k=0,1,2,3 (6.2)

constitute areigenbasiof p(0, 0, T), that is, an orthonormal basis 0f ® C?
that consists of eigenvectors pf0, O, T), wherebywy(¢) is the eigenvalue that
belongs to the eigenvectaf,. Thus the spectral resolution p{0, 0, T) takes the
form

3
p(0,0,T) = 3" Wie) Qs (6.3)
k=0
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where theQys as defined by Eq. (4.17) are the projections corresponding to the
one-dimensional subspaces generated by/tlse

Theorem6.2. Letp = p(0, O, T) be an mds operator. Then these are equivalent:
(1) p is a state
@ ur+p2+eus<1
R pes

Proof: (1)< (2). p is a state iff the lowest eigenvalue is nonnegative. The lowest
eigenvalue is given bwg(1) if ¢ = 1 andwg(—1) if e = —1. The two conditions
can be summarized by Condition (2) of the theorem.

(2)=(3). According to Egs. (6.3) and the particular form of fBgs as given
by Eq. (4.17) we have

3 3
p= ZWk(8)Qk = ZWk(S) Po, Ruy) FeR(u)* (6.4)
k=0

k=0

Since thewvy(¢)s add up to 1 andif (2) is satisfied are nonnegative the above formula
makes it evident thas belongs taS;.
(3)=(1) obvious O

Remarks.

(1) Note that sincd, = T,mes (cf. Remark 4.8) every correlation matrix is
derived from an mds state. Thus Eq. (6.4) implies that every correlation
matrix can be represented as a weighted mefmuofmproper orthogonal
matrices, thereby strengthening Proposition 4.7.

(2) Observe that we can use Condition (2) of the theorem to give a new proof
of Proposition 3.6 (which asserts that the correlation values of a state
belong to the interval [0, 1]).

(3) We can extract from the theorem the following interesting mathematical
result:

Corollary6.3. LetT beareaB x 3matrixandletw; > u, > ugbeits singular
values in descending order and tet= sign(detT). Then T belongs to the convex
hull of SO3) iff wy + w2 —euz < 1.

Proof. If T € conv(SO(3)) then by Proposition 4. 7T is a correlation matrix,
and therefore(0, O, —T) is a state (cf. Remark 4.8), which by the theorem implies
u1+ p2 —epsz < 1. Conversely, ift; + 2 — ez < 1 holds then by the theorem
p(0, 0, —T) is a state and therefore by Proposition #.& conv(SO(3)). O
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The following Corollary sharpens Proposition 3.5:

Corollary 6.4. If p = p(r, s, T) is a state them, s € B% and
T € conv(=SQ(3))
Our next step is to single out those mds states that are also separable, that is,

we want to characterize the s& N S;. An extreme point 08, is a pure state of
the product form:

P=p)®p(e)=plsIrs) Irli=Isl=1
Taking the mds component of such a state
prs = (o(r) ® p(8)™*°= p(0, 0, |r)(s])

we obtain a state (of rank 2) that belongsSionN Sp. Let £ denote the set of all
these states.

E={prsll,se Sz}
Thené& constitutes an orbit under the group x U; and we can state the following
proposition:

Proposition6.5. Sp N §1 = conv(€) and€ isthe set of extreme points 8§ N Sy.

Proof: ClearlySy N S; D conv(€). To prove the opposite inclusion lete Sp N
S1. Sincep € Sy

o= Z ck(o(rk) ® p(s¢))
k=1

where thecgs are nonnegative numbers adding up to 1 @ula positive integer

not larger than 16 (Caratheodory’s Theorem; cf. Bronsted (1982), Corollary 2.4).
Now sincep € &;, taking the mds component (cf. Definition 4.3) on both sides
leaves the left hand side of the equation unaffected:

n n
p = clp(r) ® p(s)™°= D Ckprs
k=1 k=1

showing thatp € conv(). That the set of extreme points 6§ N Sy coincides
with £ now is a consequence of Theorem A.3

Theorem 6.6. Letp = p(0, 0, T) be a state. Then these are equivalent:
(1) p is separable
(2) (0,0, —T) is a state
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() traceD) = p1+p2+pns <1
(4) sp((0,0, T)) C [0, 3]

Proof: (1)=(2) By Lemma5.1

(2)=(3) Sincep(0, 0, £T) are states it follows from Theorem 5.2 that +
p2+p3 < 1.

(3)=(1) Defineuo =1 — 1 — u2 — u3. Then

D= %(_El)‘i‘ (% +H1) E1 + u2E2 + u3Es (6.5)
where fori = 1, 2, 3,E; denotes the projection onto the jth coordinate axis.

Since the operatorg(0, 0, =E;) belong to&, it follows from (6.5) that
0(0, 0, eD) € con& = Sy N S;. Hence by the invariance & N S; underU; x
Uz, we also havep = p(0,0, T) € So N Si.

(3)<(4) In cases = 1 Condition (2) implieswg(1) > 0 andwsz(1) < %(1 -
w11). Therefore in this case sp(0, 0, T)) C [wo(1), ws(1)] C [0, %]. In cases =
—1 Condition (2) impliesws(—1) > $u1 andwo(—1) < 3. Hence in this case
sp((0, 0, T)) C [wa(—1),we(—1)] C [O, %]. Conversely, assume that g0,
0, T)) C [0, £]. Then Condition (2) is implied in case af= 1 by wy(1) > 0
andincase = —1bywo(-1) < 3. O

Corollary 6.7. SupposaetT > 0. Then ifp = p(0, 0, T) is a state therp is
separable.

Proof: IfdetT > 0 thens can be chosen to bel and therefore the eigenvalues
of p = p(0,0, T) arew;(1), j =0, 1, 2, 3. Thus ifp is a state then

1
wo(1) = Z(l — p1 — p2 — u3) =0,

a condition which by Theorem 6.6, Part (3), is equivalent teeing separable.
O

7. WHEN IS A GENERIC OPERATOR p(r,s, T) A
(SEPARABLE) STATE?

In this section we shall deal with the matrices of a 2-qubit operhater
h(y, r, s, T) relative to two distinguished bases: the Bell basis (2:8)®1, ¢2, ¢3)
and an eigenbasis (6.2, V1, V2, ¥3) of the mds componenh™ds =
h(y,0,0, T) of h. To analyze the structure of the matrit]f of the operator
h relative to the Bell basis, it is useful to writein the form

h=h(y,0,0,T) + A(r,
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whereA(r, s) = %(r -0 ®1+1®s-0). A straightforward computation shows
that the matrices relative to the Bell basis (2.8) of the operatogs1, j =1, 2,3
and the operators® ok, k = 1, 2, 3 respectively have the form

[(TJ' ®1]¢, = iAj and [1®Uk]¢ =iByg
wherei denotes the imaginary unit ar; and B, arereal 4 x 4 matrices with
[Aj, By =0for j,k=1,2, 3. It follows that
[hlg =[h(y, 0,0, T)ly + [A(r, 9)]g = X +iY
where
1 3
X =[h(»,0,0,T)], = Z(l@ 1- j;ltjkAj Bk)
and

1 3
Y = [A( 9y = (ZrJAj +5 Bj>
j=1
arereal 4 x 4 matrices. Thus we can state

Theorem 7.1. The time reversal of observables and states of a pair of qubits is
represented by the complex conjugation of the corresponding matrix relative to
the Bell basis. More precisely leth h(y, r, s, T) is an observable (state) of the
qubit system. Then [f], denotes its matrix relative to the Bell basis, we have

[h*]s = [Nl
and therefore

[h™%y = Relh],.

Proof: Taking the matrix relative to the Bell basis in the equation
h* = h(y, 0,0,T) + A(~r, —9)
yields

[h*]s = [n(y, 0,0, )y +[A(=T, =9)lp = X —iY =[h], O

Corollary 7.2.  The matrix[h], of an hermitian operator h relative to the Bell
basis hagealentries iff h is an mds operator (cf. Definition 4.3).

A one-particle hermitian operatqr = p(r) of trace 1 is a state iff det > 0.
In the case of a pair of qubits we are interested in finding analogous criteria
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that help us to decide if a given hermitian operatoe p(r, s, T) of trace 1l is a
(separable) state. For this purpose we are interested in the matripgaind o)
relative to an eigenbasigi§, V1, V2, ¥3) of p™9S, Letp’ = p(r', s, eD) andp” =
o(r’, —s, —e D) be the canonical forms @f andp respectively. Using Eq. (6.1) we
find

wo(e) —ia; —iapy —iag
ia;  wqy(e) —ibs by
e e (71
iag  —iby iby  wa(e)
and
Wo(—g) —ib; —iby ibs
ib;  wi(—e) —iag iay
[ly =00Ts =] . . : (7.2)
ibs ias wa(—e) —iag
ibs —iap iag w3(—¢)

wherea, = 1 (1, — s) andby = (1, +5), k=0, 1, 2, 3 is a state if the princi-
pal sub-determinants of the matrix (7.1) are nonnegative. If in addition the principal
sub-determinants of the matrix (7.2) are nonnegative the state is separable.

Theorem 7.3. Let p = p(r,s, T) be an hermitian operator of tracé. Let
o(r’, s, D) be a canonical form and let = %(r/ —S)andb = %(r’ +S). Thenp
is a state iffus + uo + ensz < land

Wo(e)W1(e)W2(e)Wa(e) + (a- b)? = wa(e)ws(e)aZ + wa(e)ws(e)ad
+ W (e)wa(e)ad + Wo(e)wi(e)bZ

+ Wo(e)Wa(e)b5 + Wo(e)wa(e)b3  (7.3)

Wo(e)Wi(e)Wa(e) > Wo(e)b5 + wi(e)as + wa(s)a? (7.4)
Wo(e)wi(e)ws(e) > Wo(e)bs + wi(e)as + wa(e)as (7.5)
Wo(e)Wa(e)Wa(e) = Wo(e)b] + wa(e)as 4 ws(e)a (7.6)
w1 (e)Wa(e)Wa(e) = Wi(e)bf + wa(e)bs + wa(e)bs (7.7)
wa(e)wz(e) = b5 wa(e)ws(e) = b5 wa(e)wa(e) = bf  (7.8)

Wole)wi(e) > a2 k=1,2,3 (7.9)
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pisaseparable state iff; + u2 + u3 < 1andin addition to the inequalities
(7.3)—(7.9) the same inequalities are satisfied in whidh replaced by—¢ and
the vectorsa andb are interchanged.

Remarks

(1) Note that the conditions of Theorem 7.2 are invariant with respect to the
substitutions &, b) — (4a, =b). This observation can be used to give
another proof of the fact that the state sp&cés invariant under the
involutions p > p* and p > pP (cf. Corollary 4.4). (Indeed,d"],
is obtained from ], by the substitutiond, b) — (—a, —b). Moreover
sincep(s, r’, D) is a canonical form op(P), it is possible to represent
o by a matrix that is obtained fronp[, by the substitutiond, b) —

(—a, b)).

A similar argument based on Theorem 7.2 can be used to give a
second proof of the fact that the spatmf all separable states is invariant
under the two involutiong — p# andp — p(P (cf. Theorem 4.6).

(2) Note that the terma(- b)? in (7.3) vanishes precisely ifr|| = ||s|| in
o = p(r,s, T). Indeed|r| = ||| is equivalent tdr’|| = ||S||, which in
turn is equivalent tog - b) = 0.

As a special case let us consider the case wheigep symmetricthat is,
such thato(® = p. Thenp has the formp = p(r, r, T), whereT is a symmetric
matrix. It is useful to distinguish the cases whdras negative (semi-)definite,
indefinite, and positive (semi-)definite. Let us consider the indefinite case where
the eigenvalues of are given by—y1, 12, and—us. (In the case of a symmetric
matrix the eigenvalues agree up to a sign with the singular values). Then there
exists a rotation matriR such that

RTR = diag(~pu1, 2 — u3)
Puttingr’ = Rr we see that a canonical form pfis given by
p' = p(r', Far’, D)
Thereforea = (r1/2, 0,r3/2) andb = (0,r5/2, 0). Forp to be a state it is
necessary thawg(1) > 0. For simplicity let us further assume thap(1) > 0,
which is equivalent tQuy + o + pz < 1.

It follows that under this additional assumption the operat@s a state iff
the inequality

dwo(LwW1(1ws(1) > (Wa(1)r{ + wo(L)7 + wi(1)rF) (7.10)
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holds, since under the given hypothesis inequality (7.10) (which is an instant of
(7.5)) implies all inequalities (7.4)—(7.9). The statés separable iff, in addition,
the inequality

AwWoW1WoW3 > (W()Wj_ri2 + W1W3ré2 + WQW3ré2)

withwy = wy(—1), k=0, 1, 2, 3is satisfied. All other cases are treated similarly.
We end this section by giving a necessary condition for the nonseparability
of a state.

Theorem 7.4. Letp = p(r,s, T) be a state. Them e > or se S iff p is a
product statep = p(r) ® p(s) with one factor being a (1-qubit) pure state. In
particular if o is a nonseparable state thé¢in|| < 1and|s|| < 1.

Proof: If p = p(r) ® p(s) with one of the factors being a pure state then clearly
re & or se S To see that also the converse holds we consider the spectral
resolution ofp

4 4
o= ZV\ﬁ Ps R = ZWjP(rj,Sj,Tj)
-1 -1

where forj =1, 2, 3,4r; = —R;s; and
Ti=—Ri(l - E) + Es)

and thew; sare nonnegative numbers adding up to 1. Let us consider the case where
r=>Y",wr; e S Thenforj = 1,2, 3, 4r; = r and therefore; = —Rjr e
S?, which implies that

Tj = —RjIsj)(sj| = Ir)(sjl
Lettings = Y"§_, wjsj we obtain that
p = p(r,s r){sl) = o(r) ® p(s)

wherep(r) is a one-particle pure state. A similar argument can be applsed °.
O

8. CONCURRENCE AS A MEASURE OF ENTANGLEMENT
In section 4 we introduced the concurrence
£ =+1—]sl?

as a measure of the entanglement of the two qubits in the pureRtatd-or a
member of the Bell setP = |¢k) (o] we have &(Pc) = 1. The following
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theorem shows how to compute the concurrence of a pure Btdtem the
components of a unit vector in the range Bfwith respect to the Bell basis
(2.8).

Theorem8.1. Let P = Psr be apure state and lgt be a unit vector in the range
of P (i.e., P=|x){(x]). Letax = (x, ¢«), k=0, 1, 2, 3be the four components
of x with respect to the Bell basis (2.8). Then

3

> el

k=0

§(P) =

Proof: Probably the most elegant proof of this formula exploits thex U;
isometryp betweenl€® C? and M., whose existence we established in Propo-
sition 2.1. Application ofp to the expressiony = Zﬁzo akdk yields, in view of
Formula (2.9)

1 3 1 oo — iag ’iOll — 02
o(x) 7 (ao i kE:1 ak0k> /2 [ i+ oo o+ iag

Taking the determinant leads to the formula

3
Dok
k=0
Now the determinant of(x) is clearly aU; x U, invariant. Indeed ify’ =

(u1 ® up)x for some (11, up) € Uy x Uy then

detp(x") = detp((u1 ® Uz)x) = detlUip(x)u3) = dety(x)
Next, observe that the unit vector

X = T (VIF o+ (VI E)a)

with £ = £(P) = /1 — ||s||?, belongs to the range of the canonical form (4.14)
P’ = Pjsje,.1 Of P. Indeed we have

(1+¢&) dillsi 0 O

1| —isl a-8 0 0
[ x")(x I]¢=§ 0 0 0 0
0 0 00

= 2| detp(x)|

= [Pisjest],
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It follows that x’ must have the formy’ = (u; ® up)x for some (i1, Uy) €
U; x U;. Flnally

3

2
Do

k=0

= 2|dety(x)| = 2|detp(x)|

= (VIR (VB =6 o

Corollary 8.2. A pure state P= Ps r is of mds type (belongs 1) iff the range
of P contains a unit vectog all of whose four components relative to the Bell
basis are real.

Proof: First suppose that the range Bf contains a unit vectox whose four
componentsy, = (x, ¢«), k=0, 1, 2, 3 are real. Then by the theor&itP) =
2 a2 =5, lakl? = 1. Conversely suppodeis of mds type P € Py). Then
by Corollary 7.2 P]y is a real (symmetric) matrix. Sinc®], is also idempotent
and of trace 1, it admits a normalized eigenvectay, &1, a2, a3) € R* (unique
up to a sign) belonging to the eigenvalue 1. Thes Z‘;’:O axdx has the desired
property. O

One of the problems that arises in this context is how to extend the concurrence
from the set of all pure states to the set of all states. It seems to us that the lowest
eigenvalue\; of p is a perfect candidate for such an extension.

Definition 8.3. Let p be an arbitrary state. By theoncurrenceof a statep we
mean the number

§(p) = max(0,—231)

The following lemma shows that this definition is indeed an extension of the
notion of concurrence for pure states.

Lemma8.4. If P = Psris a pure state then
- 1 > 1
A1=—§v1—IISII =—§E(P)

Proof: A canonical form ofP is given by

P' = p(lIsller, — Isler, diag(1,v1—Isl2, V1 - [s?))
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Therefore the matrix oP relative to an eigenbasis &™9s has the form
—/1—9|? 0 0 0
1 0 v1—|s|? 0 0

[Ply =[Pls =5 0 0 1 i)

0 0 —ills| 1

an equation which makes it evident that the smallest eigenval@einfiven by

AM=—3/1—]sl2 O

Example. What is the concurrence of a general mds state o(0, O, T)? Since

if detT > 0p(0, 0, T) is separable by Corollary 6.7, the concurrence can only
be different from O if deT < 0, in which case the smallest eigenvaluepof "
(0,0, —-T)is

~ 1
AL = Z(l—ﬂl—ﬂz—us)

Thus the concurrence of the mds statis given by

£(0) = max(o, Stz - 1)) ®.1)

A special class of mds states are Wverner statesA hermitian operatop =
p(r, s, T) is invariant with respect to the group of rotatioif§ it is of the form
p=p(0,0,¢1). p is a state, called Werner stateiff ¢ e [-1,3]. If £ €0, 1]
thenu; =¢, j =1, 2, 3 and thereforé(p) = 0 by (8.1). If¢ € [-1, —%] then
wj =—¢,j =1, 2,3 and therefore by (8.1)

1
£(0) = max(0,— 51+ %))
whichis 0 forg € [—%, 0] and varies between 0 and 1l@saries from—% to—1.

Remark 8.5. Wootters (1998) extends the concurrence from pure to arbitrary
states in a different way. He defines the concurrence of an arbitrarypstéehe
following formula

C(p) = max(0,k1 — ko — k3 — Kg)

wherek; > ko > k3 > k4 are the eigenvalues in descending order of the positive-
semidefinite operator

R=(plp?pl)?
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It is easy to prove that for all mds statesC(p) = &(p), that is, on these
special states the two extensions agree.

9. SOME EXAMPLES

(1) Following Horodecket al. (1996) we give an example of a nonseparable
state whose mds component is separable. Let

X1 = Cosp(e1 ® e1) + sinf(e; ® &)

X2 = Cosp(eL ® &) + sinp(e; ® e1)

with 0 < B < & /2. Theny; andy; are orthogonal and
1
Py = |x1)(xal = 5(coS' B(1+ 03) ® (1 + 03)

+ 2cosB sinB(or ® o1 — 02 ® 02) + sir? B —03)® (1 —03))
= p(—F»cos Bes, cos Bes, —F(sin28(1 — Ee,) + Eq;)) = Peoszes,

1
P = [x2) (X2l = Z(cosz B(l+ 03) ® (1 — 03)

+ 2cosB sinB(o1 ® o1 + 02 ® 02) + Sir (1 — 03) @ (1 + 03))
= p(cos Bes, — cos Be;, diag(sin B, sin28, —1)
= p(—Fs(—cos PBes), — cos Bes, —F3(sin28(1 — Ee,) + Ee,))
= P_cospe, Fs

From these formulae we see tHat, P, € P:, with & = sin 28 and thus (for the
given range of3) both pure states are nonseparable.
Now for 0 < p < 1 consider the state

p=(pPL+1-p)P)
= p(cos PBes, (2p — 1) cos Bes, diag(sinB, (1 — 2p)sin28, 2p — 1)
whose spectrum is given by gp= (0, p, 1 — p). Note that
detT = —(1 — 2p)?sir 28

which is negative for the given range gfexcept forp = % Thus we may put

¢ = —1. To write down a canonical form fgr we have to distinguish four cases;
Case 1: 0< p < 3(1—sin 28)

o® = p(cos Bey, —(1 — 2p) cos Bey, —Dy)
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whereD; = diag((1— 2p), sin 28, (1 — 2p) sin 28)
Case2:3(1-sin28) < p=<3
p® = p(cos Bey, —(1 — 2p) cos Be,, —Dy)
whereD, = diag(sin 3, (1 — 2p), (1 — 2p) sin 28)
Case 3:
p® = p(cos Bey, —(2p — 1) cos Bey, —Dy)
whereD3; = diag(sin 3, (2p — 1), (2p — 1) sin 28)p
Case 4:
p™ = p(—cos PBey, (2p — 1) cos Bey, —Dy)

whereD4 = diag((2p — 1), sin 28, (2p — 1) sin 28).
To investigate ifo™9% or p is separable it suffices to consider the matrix of

p@ = p(cos Bey, (1 — 2p)cosBey, Di)

relative to the Bell basis. It is easily computed E@M, =

%(P—(l— p) sin 28) igcosz3 0 0
4200533 %(p-t—(l— p) sin 28) 0 0
0 0 Ja-p-psinzy it Peosy
1—p 1 .
0 0 i 5 cos B 5((1_ p) + psin28

The eigenvalues gfMds are the diagonal entries of this matrjo(“ds is separable
iff they are all nonnegative, that is, i 5'2"2]/’ < p < —=—. For example if
B = m/12p™9sis separable for any value @f e [ ] What abouto itself? For
the separability op it is necessary and suff|C|ent that the smallest eigenvejue
of / is nonnegativel, is given by the formula

p—\/p2+(1—2p)sin22ﬂ if

2 =
1-p—/@-p2+@p-Dsit2p if

an expression thatis nonnegativepf= % Thusunlesp = 1/2, pisnotseparable
and introducing the auxiliary function

h(p, B) = /P2 + (L — 2p)sir? 28 — p
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theconcurrenceof p is given by

h(p, B)
£(p) =
h(1 - p, B)

|—\I\J|H

=p=
p=

I\JII—\O

IA

Forp = %S(p) = h(%, B) = 0andthug becomes separable. The same conclusion
can be reached by looking at the explicit formula foin this special casey =
p(cos Bes, 0, diag(sin 3, 0, 0)) and by invoking Corollary 5.3 or by directly
noticing that

o ~ p(cos BFses, 0, F3 diag(sin 3, 0, 0))= p(cos Be;s, 0,
—diag(sin3, 0,0))=p

To summarizep is separable iff p= 3; if B # Z thenp™dS=£ p and p™9Sis
separable for all pe [3ges, 1+s}n23]

Forg = /12 and forg = 7 p is separable iffp = Forﬂ T pmds— p
whereas fog = 7/12pMI5 £ p andpmdsls separable fop e[3, g].

(2) Letp = p(r, s, 0). Thenp is already in canonical form and the commutant
group G and the invariance grou@’ of p both coincide with the full rotation
groupSQO(3). Thereforeo ~ p’ = p(|Ir|les, |ISlles, 0). The matrix ofo’ relative to

the standard basis is diagonal and the spectrumisfiven by

J>I

spo = {1+ rli +1lsll, L+ 1l = Aisll, L= {iri + sl L= {irll — [isll}

Hencep is a state iff|r| + ||s|| < 1.
The state is separable, which can be seen directly, siheep(||r|es, —
Islles, 0) or by invoking Corollary 5.5 (See Fig. 1).

10. SOME APPLICATION TO PHYSICS

Inthis last section we assume that the qubits are realized by spin-1/2 particles.
We start with certain properties of physical significance that a nonseparable state
of a pair of qubits necessarily possesses.

Theorem 10.1. Letp = p(r,s, T) be a state of a pair of qubits that is not a
product of two one-patrticle states in which one or both factors are pure states.
Then the maps f and g defined on the unit sphéreyS

, xe& (10.1)
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Fig. 1. Concurrence op as as function op for 8 = 7 /12 andg = = /4.

and
_ S+ T*Xx
T l4r-x

a(x) €& (10.2)

are well-defined and they mag #ito B3. In the case wherg is pure f and g
map the unit sphere®dijectively onto itself. In fact letting denote the antipodal
mapt(x) = —X,X € $%, r ogo t is the inverse of f and o f o 7 is the inverse
of g.

Proof: By Theorem 7.2 the hypothesis of the theorem is equivalgfjfec 1 &
Is|l < 1, whichimpliesthatforak € 1 +s-x>1—|s|> Oand14r -x >
1—|r|| > O, sothatf andg are well defined.

Now assume thap = p(r, s, T) is a pure state and let € S*. Then by
Egs. (4.8), (4.9), (4.11), and (4.12)

Ir+Tx2=(Q4+s- X2 =|r)|?=14+2(T*r —s) - x+x*(T*T — |s>< s|)x
= |Isll® — 1 — detT |Ix||* = (Is|I* — 1)(1— [Ix]®) =0
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which shows thaf mapsS? into itself. In a similar way, using Eq. (4.10) one proves
thatg mapsS? into itself. One easily verifies, using Egs. (4.8), (4.9), (4.10), and
(4.11), that the map$ o T andg o = are inverses of each other.

Finally letp = o(r, s, T) be an arbitrary state and let

4
p(r,s, T) = ZWkp(rk, S Tk)
k=1

be its spectral resolution. Then fere S?

4 4
I+ Tl < Do widllrc+ Tiexlh < ) wi(@ +8c-X) = (L+5-%)
k=1 k=1

which shows thatf mapsS? into B2. By an analogous argument one shows that
g also mapss? into BS. O

Suppose we have a pair of spin-1/2 particles prepared into astate(r, s, T).

Questionl: In what state are the individual constituents of the pair?

Answer Each constituent particle is in the respectiwduced statas defined
by Egs. (3.6) and (3.7).

In the special case whepehas been prepared into a pure state of the mds type
(r = s= 0) we have awell-known paradox: Although the pair is in a state of maxi-
mal information the individual constituents are in a state of minimal information
(in a state of maximal disorder).

Question2: What is the probability that a measurement of the observable
1®a- o, wherea is a unit vector yields outcomet1? Keeping in mind that
we are dealing with a pair of spin-1/2 particles the question can be rephrased.
Suppose we measure on particle 2 the component of the spin vector in dirgction
by performing a Stern—Gerlach experiment, what is the probability that the particle
has its spin (vector) “up,” that is, aligned with the directash

Answer The probability is

(0,18 (@) = (02, p(@) = (p(S), p(@) = 5(1+5-2)

Question3: Suppose the outcome of the measurement is actydllywhat
state do we now assign to the pair of particles?
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Answer By the von Neumann projection postulate the state after a measure-
ment ofl ® a- o with outcome+1 is given by

/ 2 _
o S a(1 ® p(@)p(l® p(a) = 20+s 3

T 11
x <1® p@+r1-0®p@+1®p@)(s-0)p(d)

3 3
+Y Ytk ® p(a)ffkp(a))
j=1 k=1
= %(H %) ® p(a) = p(f(a) ® p(a),

wheref is defined by (10.1). Physically this means that the two spin-1/2 particles
are now disentangled. The second particle is in the pure stajewith its spin
aligned with the direction, whereas the first particle is in the statef (a)), which
in general is anixed stateHowever, in the special case where the original state
of the pair wagure, it follows from Theorem 10.1 that the first particle too is in a
pure state, having its spin vector aligned with the directi¢a). For example, if
p = Po,r = p(0, 0, —R) was a pure state of tlneds typethen after a measurement
of the observabld ® a - o yielding outcome+1, the first particle will be in the
pure statep(— Ra); in particular if the original state of the pair was thainglet
statep = Py = Py, = p(0, 0, —1I), then after the measurement the first particle
will have its spin vector aligned with the opposite directiea.

Similarly if we measura - o ® 1 and find the outcome-1, after the mea-
surement the system will be in the product sfat® ® o(g(a)) whereg is defined
by (10.2).

To not unduly interrupt the flow of the argument we relegated a few results

and their proofs into two appendices:

APPENDIX A: SOME GROUP-THEORETICAL RESULTS

We start with an elementary group-theoretical result.

Proposition A.1. Let G be a group and let Qe a normal subgroup. Then the
set

H:={(01,92) € GxG|g=gmodG’}

is a subgroup of Gx G.
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Proof: Let(gs, 02), (h1, hy) € H.Fromg; = g, modG’ we getglhI1 = gthl
modG’. But sinceh; = h, modG’ we have

gh;t = ghthohy' = gohyt mod G

Thus by transitivityg;h; * = goh,* modG’, which proves that
(01, &) - (i, hy) P e H o

The next result pertains to the stabilizer of a positive semidefinite matrix

Proposition A.2. Let n be a positive integer and let B diag(u1, w2, ..., tn)
be a diagonal matrix with nonnegative entries in descending order w, >
...un > 0and let H be the stabilizer of D, that is, the group

Hp = {(Rl, Rz) € qu) X Sq3) | R]_DR; = D}
Let G be the group of all rotations that commute with D
G :={Re SQ(n) | DR= DR}

and let G be the group of all rotations leaving D fixed by multiplication from the
left:

G :={ReSO(n) | RD= D}
Then

(1) G’ is a normal subgroup of G
2) Hb ={(Ri,R) e Gx G| Ry =R, modG'}

Proof: (1) Suppos&R’ € G'. Taking the transpose of the equatiBfdo = D we
obtainDR* = D which by multiplication byR’ from the right givesD = DR..
ThusR' € G andG’ is a subgroup o6. Now for R € G we have

RRR*D = RRDR* = RDR* = D

and thuDRR* € G’, showing thatG’ is normal inG.

(2) Suppose first thatR;, R;) € Hp. Then RyD = DR, holds. Taking the
transpose we obtaldR; = R;D. Multiplication of this equation from the left by
R and from the right byr; givesR, D = DR;. Multiplication of this equation from
left by D givesDR,D = D?R;. But by the original equatioDR,D = R;D?. Thus
R1D? = D?Ry, which impliesR; € G. Similarly R, € G. Now the original equa-
tion can be rewritten aR; Ry D = D, which means; = R, modG'. Conversely
suppose thaR;, R, € GandR; = R, modG’. ThenR,DR; = R{R;D = D and
therefore Ry, R)) € Hp. O
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TheoremA.3. LetV be afinite dimensional real inner product space. Le{\G)L

be the group of all invertible linear transformations of V endowed with usual
topology (i.e., the topology induced by the operator norm). Let G be a compact
subgroup of GI(V) and let

Gx={g(x)| g € G}

be the orbit of G determined bxyye V. Then the set of extreme points of the convex
hull S = convGx of Gx coincides with G.

Proof: As the continuous image of a compact 98k is compact. It follows
that S = convGx is compact. (Theorem 2.8 in Brgnsted, 1982) Hence the set of
extreme points ofS is contained inGx. (Theorem 5.10 in Brgnsted, 1982) But
sinceSis invariant undeiG the same must be true for the set of extreme points:
Every point inGx is extreme. O

APPENDIX B: SOME APPLICATIONS OF THE THEORY
OF CONVEX CONES

We start with the proposition that a stgte= p(r, s, T) is separable iff
o =p(r,—s —T) is also a state. We have seen that the condition is necessary
(Lemma 5.1). We want to show that the condition is also sufficient. For this pur-
pose we need to invoke some elementary results from the theory of convex cones. A
good source of this material is Hilgeat al. (1989). We first introduce the (closed)
convex cone

’C=UV30

y=0

generated by the s& of all separable states within the real vector sphgeof
all hermitian operators and its dual cone:

K=1{heH,| VN €K (h N)> 0}

We have the inclusions C H, C K andK is generating that is, K — K = Ha,
an assertion that follows from (3.3) and the equations

1=p(e1) + p(—&1)
ok = p(&) — p(—&), k=1,2,3,
where €1, &, &) denotes the standard basidin. The statement that is generat-
ing is equivalent to the statement tifats aproper conethat s, it has the property

(=K)N K = {0} (cf. Hilgert et al. (1989), Proposition 1.1.7). We first focus our
attention on the dual coné. Let L(H2) be the space of all linear transformations
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of H,. By endowingL(H2) with the trace inner product
(A, Ny =trace*A’), A, A € L(Hy),

where A* denotes the adjoint oh, £(H,) becomes amner product spaceA

linear transformatiom of £ is said to bepositiveprovidedA leaves the positive

coneH, C H, invariant. The sel’(Hz)* of all positive linear transformations

constitute a convex cone withifi(>), which can be used to characterige In

fact we have

Theorem B.1. LetJ : L(H2) — Hs = H2 ® H, be the linear map defined by
J(A)=201® APy, A € L(H),

wherel denotes the identity transformation Bf, and B = p(0, 0, —1I) is the
singlet state. The is an isometry ont@{, and

K = J(L(H2)™).

Proof: Throughoutthis proof we denote the2 identity matrix byoo, reserving
the symboll for the identity transformation dft,.

(1) LetAjk € L(H2), j, k=0, 1, 2, 3 be the transition operators between the
members of the orthonormal basis (2.7). Explicitly. is defined by

1
Jk(a) 20'k,a)dj, a e Ho, j,k=0,1,2,3

By linear algebra generalities these transition operators constitute an orthonormal
basisinC(H>). Itis easily verified that the image&(A j«) are given by the formulas

1 .
J(Ajo) = E(O'O®O'j), j=0,1,2,3

1 .
J(Ajk):_§(6k®aj)y J :Ol 11 213k:1! 21 31

and hence they constitute an orthonormal basigjn This proves that/ is an
isometry ontdH.
(2) The remainder of the proof rests on the formula

Vxy € 81 (A(p(=X)), o)) = (p(X) ® p(y), T(A)) (B.1)

which holds for any linear transformatiagnof H,. For the proof of (B.1) we apply
A to the expression

3
p(—x) = %((P(X), o0)a0 — Y _(p(X), Uk)Gk)

k=1
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and then form the inner product wigy). We obtain

(A(p(=x)), p(¥))

3<<p(x), o0)(A(00), p(Y)) —

3 (p(X), ok) (A (o), P(Y)>>

3
k=

[N

3
§<p(x) & p(y), 70 ® o) — 3ok @ A(ak)>
k=1

= 2(p(X) ® p(¥), 1 ® A)Po) = (p(X) ® p(y), T(A)).

(3) Now suppose that € L(H,)*. Thenthe left hand side of (B.1) is nonneg-
ative for allx, y € S Hence the same is true for the right hand sidiéA) € K.

Conversely suppose thate K and letA = 7~1(h). Then the right hand side
of (B.1) is nonnegative for alt, y € S. Hence the same is true for the left hand
side, which implies that € L(H,)T. O

Lemma B.2. Every positive linear map\ : H, — H, has the formA = A +
0A', wherex and A’ are completely positive an@ denotes the positive linear
involution of H, (time reversal) defined by

e(h(% a)) = h(Va _a)v h € H2°
Proof: It is well-known that every positive linear transformation7¢$ has the
form
A=r+71) (B.2)

wherei and)” are completely positive ande £(H,)™" is the transposition(h) =
ht € H, (cf. Woronowicz, 1976). In terms of the representation (3.1h dhe
transposition can be expressed as

th(y,n) =h(y,n)' =h(y, S), heHe
whereS stands for the reflection at the (1, 3)-coordinate plane. Hence
t(h(y, 1) = h(y, S) = h(y, F2F2S) = h(y, —Far) = 6(h(y, Far))
= 60 (uoh(y, r)ug)

whereug € U; is defined by (2.2). In the last part of the equation we use Formula
(3.2) in combination with the easily verifiable fact tH(uo) = F,. It follows that

T = 0 o Up, wherellp stands for the conjugation hys. Inserting this expression
into (B.2) we obtain the desired decomposition with=Tgo A”. O

Theorem B.3.
K= +m1f (B.3)



1112 Kummer

Proof: SinceK c ‘H; and by Lemma 5.1€ = K c H4, and the cone${;
andH4 are self-dual, we obtaik(; + H; C K. To prove the opposite inclusion
suppose that K. Then by Theorem B.lh can be written as

h=01® A)P
for someA € L(Hz2)". Now applying Lemma B.2 we obtain
h=(1®A)Py=(1®AN)Py+ (1®0))Py = (1® APy + (181) Py

wherex, 1" : My — M, are completely positive maps. This implies thag( 1)
Po, (1 ® )Py € HS and therefordr € Hf +H;. O

Taking the dual of Eq. (B.3) and keeping in mind th&f and7/{-4I are self-dual,
we obtain, using the bipolar theorem (cf. Propositions 1.1.4 and 1.1.6 in Hilgert
et al, 1989).

Corollary B.4.
K=mH;n 7/1}

CorollaryB.5. Letp = p(r, s, T) be a state such that alsb= p(r, —s, —T)is
a state. Them is separable.
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